Forecasting and stress testing credit card default using dynamic models

نویسندگان

  • Tony Bellotti
  • Jonathan Crook
چکیده

We present discrete time survival models of borrower default for credit cards that include behavioural data about credit card holders and macroeconomic conditions across the credit card lifetime. We find that dynamic models which include these behavioural and macroeconomic variables provide statistically significant improvements in model fit, which translate into better forecasts of default at both account and portfolio levels when applied to an out-of-sample data set. By simulating extreme economic conditions, we show how these models can be used to stress test credit card portfolios. © 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retail credit stress testing using a discrete hazard model with macroeconomic factors

We present a stress testing approach based on a dynamic model of default. Retail credit models are implemented using discrete survival analysis which enables macroeconomic conditions to be included directly as time-varying covariates. In consequence, these models can be used for stress testing by determining changes in default given downturn economic scenarios. In particular Monte Carlo simulat...

متن کامل

A Statistical Model for Credit Scoring

We derive a model for consumer loan default and credit card expenditure. The default model is based on statistical models for discrete choice, in contrast to the usual procedure of linear discriminant analysis. The model is then extended to incorporate the default probability in a model of expected profit. The technique is applied to a large sample of applications and expenditure from a major c...

متن کامل

Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank

Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...

متن کامل

Loss given default models incorporating macroeconomic variables for credit cards

Based onUKdata formajor retail credit cards,we build severalmodels of Loss GivenDefault based on account level data, including Tobit, a decision tree model, a Beta and fractional logit transformation. We find that Ordinary Least Squares models with macroeconomic variables perform best for forecasting Loss Given Default at the account and portfolio levels on independent hold-out data sets. The i...

متن کامل

Macro Stress Testing on Credit Risk of Commercial Banks in China Based on Vector Autoregression Models

This paper develops a framework for stress-testing the credit risk of Chinese commercial banks to macroeconomic shocks. Using data over the period 1985-2008, this study establishes a vector auto-regression (VAR) model to describe the links between default rate and macroeconomic factors, and then designs three stress scenarios to implement the stress testing by Monte Carlo simulation. As a resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011